The preendosomal compartment comprises distinct coated and noncoated endocytic vesicle populations
نویسندگان
چکیده
The transfer of molecules from the cell surface to the early endosomes is mediated by preendosomal vesicles. These vesicles, which have pinched off completely from the plasma membrane but not yet fused with endosomes, form the earliest compartment along the endocytic route. Using a new assay to distinguish between free and cell surface connected vesicle profiles, we have characterized the preedosomal compartment ultrastructurally. Our basic experimental setup was labeling of the entire cell surface at 4 degrees C with Con A-gold, warming of the cells to 37 degrees C to allow endocytosis, followed by replacing incubation medium with fixative, all within either 30 or 60 s. Then the fixed cells were incubated with anti-Con A-HRP to distinguish truly free (gold labeled) endocytic vesicles from surface-connected structures. Finally, analysis of thin (20-30 nm) serial sections and quantification of vesicle diameters were carried out. Based on this approach it is shown that the preendosomal compartment comprises both clathrin-coated and non-coated endocytic vesicles with approximately the same frequency but with distinct diameter distributions, the average noncoated vesicle being smaller (95 nm) than the average coated one (110 nm). In parallel experiments, using an anti-transferrin receptor gold-conjugate as a specific marker for clathrin-dependent endocytosis it is also shown that uncoating of coated vesicles plays only a minor role for the total frequency of noncoated vesicles. Furthermore, after perturbation of clathrin-dependent endocytosis by potassium depletion where uptake of transferrin is blocked, noncoated endocytic vesicles with Con A-gold, but not coated vesicles, exist already after 30 and 60 s. Finally, it is shown that the existence of small, free vesicles in the short-time experiments cannot be ascribed to recycling from the early endosomes.
منابع مشابه
Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors
We have previously demonstrated that the preendosomal compartment in addition to clathrin-coated vesicles, comprises distinct nonclathrin coated endocytic vesicles mediating clathrin-independent endocytosis (Hansen, S. H., K. Sandvig, and B. van Deurs. 1991. J. Cell Biol. 113:731-741). Using K+ depletion in HEp-2 cells to block clathrin-dependent but not clathrin-independent endocytosis, we hav...
متن کاملMolecules Internalized by Clathrin-independent Endocytosis Are Delivered to Endosomes Containing Transferfin Receptors
We have previously demonstrated that the preendosomal compartment in addition to clathrincoated vesicles, comprises distinct nonclathrin coated endocytic vesicles mediating clathrin-independent endocytosis (Hansen, S. H., K. Sandvig, and B. van Deurs. 1991. J. Cell Biol. 113:731-741). Using K ÷ depletion in HEp-2 cells to block clathrin-dependent but not clathrin-independent endocytosis, we hav...
متن کاملLigands internalized through coated or noncoated invaginations follow a common intracellular pathway.
Cholera toxin (CT) represents a class of ligands that binds preferentially to noncoated pits on the cell surface. In the present study, we have investigated the mechanism of endocytosis of this class of ligand and compared it to the classic coated pit mechanism. When either CT coupled to colloidal gold particles (CT-gold) or 125I-labeled CT were incubated with 3T3 L1 fibroblasts at 4 degrees C,...
متن کاملThe coated pit and macropinocytic pathways serve distinct endosome populations
Clathrin-coated vesicle endocytosis and macropinocytosis are distinct endocytic pathways demonstrable in several cell types including human epidermoid A431 cells (West, M.A., M.S. Bretscher, and C. Watts. 1989. J. Cell Biol. 109:2731-2739). Here we analyze the extent of mixing of macropinocytic endosome (macropinosome) content with that of conventional endosomes served by coated vesicle endocyt...
متن کاملSNX15 links clathrin endocytosis to the PtdIns3P early endosome independently of the APPL1 endosome.
Sorting nexins (SNXs) are key regulators of the endosomal network. In designing an RNAi-mediated loss-of-function screen, we establish that of 30 human SNXs only SNX3, SNX5, SNX9, SNX15 and SNX21 appear to regulate EGF receptor degradative sorting. Suppression of SNX15 results in a delay in receptor degradation arising from a defect in movement of newly internalised EGF-receptor-labelled vesicl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 113 شماره
صفحات -
تاریخ انتشار 1991